

Queen's University Belfast

Human Impacts on Groundwater and Surface Waters

Dr. Ulrich Ofterdinger U.Ofterdinger@qub.ac.uk

Introduction

- Over the past sessions we have seen the scope and the significance of the Tellus Data Sets
- Indications of the multitude of uses these data sets may be put to
- In the following few minutes focus on the relevance of the Tellus Project in Assessing Human Impacts on Groundwater and Surface Waters

Legislative Drivers for Assessment

- Legislative Framework for assessing human impacts on Groundwater and Surface Waters include:
 - Water Framework Directive / Groundwater Directive
 - Environmental Liability Directive
 - Habitats Directive & Birds Directive
 - Draft Soil Protection Directive

Conceptual Framework for Assessment

- The general Conceptual Framework for assessing human impacts on groundwater and surface waters
 - Source Pathway Receptor Model

- Evaluate presence and significance of linkages
- Leading to more detailed risk assessment of identified linkage

Conceptual Framework and Tellus

- How do the Tellus Data Sets fit into this conceptual Framework ?
 - How can they help assess:
 - Sources
 - Pathways
 - Receptors
 - And relevant linkages

Tellus Soil Geochemistry Data (rural/urban)

- Provide background information on specific compound concentrations on which the imprint of anthropogenic impacts may be identified
 - diffuse and point sources
 - organic & inorganic compounds
- geochemistry data may provide additional information on compound speciation and associated mobility / toxicology

Tellus Stream Hydrochemistry Data

- Provide background information on specific compound concentrations supplementing existing data sets from regulatory monitoring schemes
 - eg. Nitrate levels in surface waters diffuse impact

Tellus Stream Hydrochemistry Data

Tellus Airborne Geophysics

- Identification of contaminant plumes in shallow groundwater (EM data)
 - Together with other information highlight areas that may warrant more detailed intrusive SI

Magnetic Total Intensity and 3k apparent conductivity (mS/m) on 50k OS map. Flight lines shown Beamish (2007)

Conceptual Framework and Tellus

- How do the Tellus Data Sets fit into this conceptual Framework ?
 - How can they help assess:
 - ✓ Sources
 - Pathways
 - Receptors

<u>Tellus Soil Geochemistry & Stream Hydrochemistry</u> <u>Data</u>

- The correlation of geochemical and hydrochemical data may highlight pathway linkages and provide information on compound speciation / mobility
 - Rural data resolution diffuse pollution
 - Urban setting even point source impacts ?

Tellus Airborne Geophysics

- Constrain geological mapping / geometry of bedrock units
 - Relevant information to choose appropriate conceptual models including key processes / properties governing Groundwater flow

GSNI 1997

Tellus Airborne Geophysics

- Provides information on presence and geometry of structural subsurface features
 - Dykes
 - Fault zone

Airborne magnetic field image of Northern Ireland. Note that many of the lineaments may play a strong role in influencing bedrock hydrogeology. GSNI (BGS) 2007

Tellus Airborne Geophysics

- Provides information on presence and geometry of structural subsurface features
- Features may act as:
 - Preferential flow paths
 - Barriers to subsurface flow
 / Compartmentalisation

Tellus Airborne Geophysics

- Provides information on presence and geometry of structural subsurface features
 - May govern / dominate groundwater flow regime
 - May govern associated attenuation processes for specific contaminants

Conceptual Framework and Tellus

- How do the Tellus Data Sets fit into this conceptual Framework ?
 - How can they help assess:
 - ✓ Sources
 - Pathways
 - Receptors

Receptors & Tellus Data

Tellus Stream Hydrochemistry

- Provides supplemental base line data for quality status of surface waters (Aquatic Environment as receptor)
- informs the development of threshold values for RBD's cognisant of background levels and targeted at good quality status to be achieved

Receptors & Pathways

Tellus Airborne Geophysics

- Provide data for assessment of wetlands / GWDTE
- Baseline assessment of (residual) peat thickness

Correlation of Tellus Airborne γ -ray count rate and field survey γ -ray count rate with field depth measurements (after Coyle 2006)

Conceptual Framework and Tellus

- How do the Tellus Data Sets fit into this conceptual Framework ?
 - How can they help assess:
 - ✓ Sources
 - ✓ Pathways
 - Receptors

Conclusion

- Combination of Tellus Data Sets provide a multitude of applications in assessing human impacts on Groundwater and Surface Waters
- Tellus provides:
 - important data for baseline assessment of environmental quality
 - comprehensive datasets for better characterisation of the geological environment in which these impacts are taking place